Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
bioRxiv ; 2024 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-38370675

RESUMEN

Introduction: Multiple sclerosis (MS) is the most common inflammatory neurodegenerative disease of the central nervous system (CNS) in young adults and results in progressive neurological defects. The relapsing-remitting phenotype (RRMS) is the most common disease course in MS and may progress to the progressive form (PPMS). Objectives: There is a gap in knowledge regarding whether the relapsing form can be distinguished from the progressive course or healthy subjects (HS) based on an altered serum metabolite profile. In this study, we performed global untargeted metabolomics with the 2D GCxGC-MS platform to identify altered metabolites between RRMS, PPMS, and HS. Methods: We profiled 235 metabolites in the serum of patients with RRMS (n=41), PPMS (n=31), and HS (n=91). A comparison of RRMS and HS patients revealed 22 significantly altered metabolites at p<0.05 (false discovery rate [FDR]=0.3). The PPMS and HS comparisons revealed 28 altered metabolites at p<0.05 (FDR=0.2). Results: Pathway analysis using MetaboAnalyst revealed enrichment of four metabolic pathways in both RRMS and PPMS (hypergeometric test p<0.05): 1) galactose metabolism; 2) amino sugar and nucleotide sugar metabolism; 3) phenylalanine, tyrosine, and tryptophan biosynthesis; and 4) aminoacyl-tRNA biosynthesis. The Qiagen IPA enrichment test identified the sulfatase 2 (SULF2) (p=0.0033) and integrin subunit beta 1 binding protein 1 (ITGB1BP1) (p=0.0067) genes as upstream regulators of altered metabolites in the RRMS vs. HS groups. However, in the PPMS vs. HS comparison, valine was enriched in the neurodegeneration of brain cells (p=0.05), and heptadecanoic acid, alpha-ketoisocaproic acid, and glycerol participated in inflammation in the CNS (p=0.03). Conclusion: Overall, our study suggested that RRMS and PPMS may contribute metabolic fingerprints in the form of unique altered metabolites for discriminating MS disease from HS, with the potential for constructing a metabolite panel for progressive autoimmune diseases such as MS.

2.
bioRxiv ; 2024 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-38260401

RESUMEN

Unresolved and uncontrolled inflammation is considered a hallmark of pathogenesis in chronic inflammatory diseases like multiple sclerosis (MS), suggesting a defective resolution process. Inflammatory resolution is an active process partially mediated by endogenous metabolites of dietary polyunsaturated fatty acids (PUFA), collectively termed specialized pro-resolving lipid mediators (SPMs). Altered levels of resolution mediators have been reported in several inflammatory diseases and may partly explain impaired inflammatory resolution. Performing LC-MS/MS-based targeted lipid mediator profiling, we observed distinct changes in fatty acid metabolites in serum from 30 relapsing-remitting MS (RRMS) patients relative to 30 matched healthy subjects (HS). Robust linear regression revealed 12 altered lipid mediators after adjusting for confounders (p <0.05). Of these, 15d-PGJ2, PGE3, and LTB5 were increased in MS while PGF2a, 8,9-DiHETrE, 5,6-DiHETrE, 20-HETE, 15-HETE, 12-HETE, 12-HEPE, 14-HDoHE, and DHEA were decreased in MS compared to HS. In addition, 12,13-DiHOME and 12,13-DiHODE were positively correlated with expanded disability status scale values (EDSS). Using Partial Least Squares, we identified several lipid mediators with high VIP scores (VIP > 1: 32% - 52%) of which POEA, PGE3, DHEA, LTB5, and 12-HETE were top predictors for distinguishing between RRMS and HS (AUC =0.75) based on the XGBoost Classifier algorithm. Collectively, these findings suggest an imbalance between inflammation and resolution. Altogether, lipid mediators appear to have potential as diagnostic and prognostic biomarkers for RRMS.

3.
Mol Neurobiol ; 61(1): 397-410, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37620688

RESUMEN

The metabolic needs of the premature/premyelinating oligodendrocytes (pre-OLs) and mature oligodendrocytes (OLs) are distinct. The metabolic control of oligodendrocyte maturation from the pre-OLs to the OLs is not fully understood. Here, we show that the terminal maturation and higher mitochondrial respiration in the OLs is an integrated process controlled through pyruvate dehydrogenase complex (Pdh). Combined bioenergetics and metabolic studies show that OLs show elevated mitochondrial respiration than the pre-OLs. Our signaling studies show that the increased mitochondrial respiration activity in the OLs is mediated by the activation of Pdh due to inhibition of the pyruvate dehydrogenase kinase-1 (Pdhk1) that phosphorylates and inhibits Pdh activity. Accordingly, when Pdhk1 is directly expressed in the pre-OLs, they fail to mature into the OLs. While Pdh converts pyruvate into the acetyl-CoA by its oxidative decarboxylation, our study shows that Pdh-dependent acetyl-CoA generation from pyruvate contributes to the acetylation of the bHLH family transcription factor, oligodendrocyte transcription factor 1 (Olig1) which is known to be involved in the OL maturation. Pdh inhibition via direct expression of Pdhk1 in the pre-OLs blocks the Olig1-acetylation and OL maturation. Using the cuprizone model of demyelination, we show that Pdh is deactivated during the demyelination phase, which is however reversed in the remyelination phase upon cuprizone withdrawal. In addition, Pdh activity status correlates with the Olig1-acetylation status in the cuprizone model. Hence, the Pdh metabolic node activation allows a robust mitochondrial respiration and activation of a molecular program necessary for the terminal maturation of oligodendrocytes. Our findings open a new dialogue in the developmental biology that links cellular development and metabolism. These findings have far-reaching implications in the development of therapies for a variety of demyelinating disorders including multiple sclerosis.


Asunto(s)
Esclerosis Múltiple , Remielinización , Humanos , Cuprizona , Reprogramación Metabólica , Acetilcoenzima A , Oligodendroglía/fisiología , Oxidorreductasas , Piruvatos , Factores de Transcripción
4.
Cancers (Basel) ; 15(20)2023 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-37894298

RESUMEN

Triple-negative breast cancer (TNBC), as one of the most aggressive forms of breast cancer, is characterized by a poor prognosis and a very low rate of disease-free and overall survival. In recent years, immunotherapeutic approaches targeting T cell checkpoint molecules, such as cytotoxic lymphocyte antigen-4 (CTLA-4), programmed death1 (PD-1) or its ligand, programmed death ligand 1 (PD-L1), have shown great potential and have been used to treat various cancers as single therapies or in combination with other modalities. However, despite this remarkable progress, patients with TNBC have shown a low response rate to this approach, commonly developing resistance to immune checkpoint blockade, leading to treatment failure. Extracellular acidosis within the tumor microenvironment (also known as the Warburg effect) is one of the factors preventing immune cells from mounting effective responses and contributing to immunotherapy treatment failure. Therefore, reducing tumor acidity is important for increasing cancer immunotherapy effectiveness and this has yet to be realized in the TNBC environment. In this study, the oral administration of sodium bicarbonate (NaHCO3) enhanced the antitumor effect of anti-PD-L1 antibody treatment, as demonstrated by generated antitumor immunity, tumor growth inhibition and enhanced survival in 4T1-Luc breast cancer model. Here, we show that NaHCO3 increased extracellular pH (pHe) in tumor tissues in vivo, an effect that was accompanied by an increase in T cell infiltration, T cell activation and IFN-γ, IL2 and IL12p40 mRNA expression in tumor tissues, as well as an increase in T cell activation in tumor-draining lymph nodes. Interestingly, these changes were further enhanced in response to combined NaHCO3 + anti-PD-L1 therapy. In addition, the acidic extracellular conditions caused a significant increase in PD-L1 expression in vitro. Taken together, these results indicate that alkalizing therapy holds potential as a new tumor microenvironment immunomodulator and we hypothesize that NaHCO3 can enhance the antitumor effects of anti-PD-L1 breast cancer therapy. The combination of these treatments may have an exceptional impact on future TNBC immunotherapeutic approaches by providing a powerful personalized medicine paradigm. Therefore, our findings have a great translational potential for improving outcomes in TNBC patients.

5.
iScience ; 26(10): 107921, 2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37841597

RESUMEN

Metabolism and energy processes governing oligodendrocyte function during neuroinflammatory disease are of great interest. However, how varied cellular environments affect oligodendrocyte activity during neuroinflammation is unknown. We demonstrate that activated microglial energy metabolism controls oligodendrocyte mitochondrial respiration and activity. Lipopolysaccharide/interferon gamma promote glycolysis and decrease mitochondrial respiration and myelin protein synthesis in rat brain glial cells. Enriched microglia showed an early burst in glycolysis. In microglia-conditioned medium, oligodendrocytes did not respire and expressed less myelin. SCENITH revealed metabolic derangement in microglia and O4-positive oligodendrocytes in endotoxemia and experimental autoimmune encephalitogenic models. The early burst of glycolysis in microglia was mediated by PDPK1 and protein kinase B/AKT signaling. We found that microglia-produced NO and itaconate, a tricarboxylic acid bifurcated metabolite, reduced mitochondrial respiration in oligodendrocytes. During inflammation, we discovered a signaling pathway in microglia that could be used as a therapeutic target to restore mitochondrial function in oligodendrocytes and induce remyelination.

6.
bioRxiv ; 2023 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-37808700

RESUMEN

Multiple sclerosis (MS) is the most common inflammatory neurodegenerative disease in young adults, resulting in neurological defects and disability. The endogenous mechanisms to resolve inflammation are intact but become defective in patients, resulting in lack of resolution mediators and unresolved chronic inflammation. Docosahexaenoic acid (DHA) metabolism being impaired in MS, we hypothesize that supplementing its downstream metabolite maresin 1 (MaR1) will alleviate inflammation and demyelination in preclinical mouse model of MS; experimental allergic encephalomyelitis (EAE). Restoration of MaR1 by its exogenous administration in EAE mice propagated inflammatory resolution and had a protective effect on neurological deficits, prevented disease progression, and reduced disease severity by reducing immune cell infiltration (CD4+IL17+ and CD4+IFN-γ+) into the CNS. It significantly reduced the proinflammatory cytokine IL17 and promoted an anti-inflammatory response via IL10 and IL4. Neutralization of IL10 abolished the protective effect of MaR1 in EAE confirming IL10 is mediating MaR1 effect in EAE. Furthermore, it improved the pathophysiology and exerted neuroprotective effects by mitigating disease signs in EAE as evidenced by lower levels of NFL in the plasma of treated group compared to control and higher MBP expression in the brain from the MaR1 treated mice, decreased inflammatory infiltrates, and less demyelination and vacuolization in the spinal cord tissue sections of treated mice. SCENITH data confirmed that MaR1 maintains myelin by regulating oligodendrocyte metabolism. Also, it induces metabolic reprogramming in infiltrating CD4 cells and macrophages, which modulate their phenotype. Metabolic changes induced macrophages by MaR1 restores the impaired efferocytosis in EAE, promoting clearance of damaged myelin and dead cells; thereby lowering the disability with disease course. Overall, MaR1 supplementation has anti-inflammatory and neuroprotective effects in preclinical animal models and induces metabolic reprogramming in disease associated cell-types, promotes efferocytosis, implying that it could be a new therapeutic molecule in MS and other autoimmune diseases. Highlights: Inflammation is dysregulated in EAE due to impaired synthesis of DHA derived proresolving lipid mediator MaR1.Administration of the resolution agonist MaR1 propagates resolution processes and improves neurological outcome in RR model of EAE.MaR1 ameliorates clinical signs of EAE by attenuating pro-inflammatory cytokine IL17 mediated response and promoting anti-inflammatory response through IL10.MaR1 supplementation improves the pathophysiology in EAE and shows neuroprotection as indicated by the lower levels of NFL in the plasma and higher expression of MBP in the brain of treated mice.MaR1 induces metabolic reprogramming in disease-associated cell types.MaR1 promotes efferocytosis in EAE through metabolic reprogramming of macrophages. Significance: Inflammatory process is a protective response to several challenges like injury or infection. However, it must resolve over time to maintain tissue homeostasis. Impaired or delayed resolution leads to damaging effects, including chronic inflammation, tissue damage, and disease progression as occurs in multiple sclerosis (MS). We report that inflammation is dysregulated in preclinical animal model of MS, experimental autoimmune encephalomyelitis (EAE), partially due to impaired synthesis of proresolving lipid mediators. We show that the administration of the resolution agonist known as maresin 1 (MaR1) in EAE actively propagates resolution processes and improves neurological outcome. We conclude that MaR1 is a potential interventional candidate to attenuate dysregulated inflammation and to restore neurological deficits in EAE.

7.
iScience ; 26(10): 107839, 2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37822507

RESUMEN

In various cancer models, dietary interventions have been shown to inhibit tumor growth, improve anticancer drug efficacy, and enhance immunity, but no such evidence exists for epithelial ovarian cancer (EOC), the most lethal gynecologic cancer. The anticancer immune responses induced by 16-h intermittent fasting (IF) were studied in mice with EOC. IF consistently reduced metabolic growth factors and cytokines that stimulate tumor growth, creating a tumor-hostile environment. Immune profiling showed that IF dramatically alters anti-cancer immunity by increasing CD4+ and CD8+ cells, Th1 and cytotoxic responses, and metabolic fitness. ß-hydroxy butyrate (BHB), a bioactive metabolite produced by IF, partially imitates its anticancer effects by inducing CD8+ effector function. In a direct comparison, IF outperformed exogenous BHB treatment in survival and anti-tumor immune response, probably due to increased ketogenesis. Thus, IF and one of its metabolic mediators BHB suppress EOC growth and sustain a potent anti-tumor T cell response.

8.
BMC Res Notes ; 16(1): 190, 2023 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-37644560

RESUMEN

OBJECTIVE: Researchers sought patient feedback on a proposed randomized controlled trial (RCT) in which gynecological cancer patients would modify their diets with intermittent fasting to gain insight into patients' perspectives, receptivity, and potential obstacles. A convenience sample of 47 patients who met the inclusion criteria of the proposed RCT provided their feedback on the feasibility and protocols of the RCT using a multi-method approach consisting of focus groups (n = 8 patients) and surveys (n = 36 patients). RESULTS: Patients were generally receptive to the concept of intermittent fasting, and many expressed an interest in attempting it themselves. Patients agreed that the study design was feasible in terms of study assessments, clinic visits, and biospecimen collection. Feedback on what could facilitate adherence included convenient appointment scheduling times and the availability of the research team to answer questions. Regarding recruitment, patients offered suggestions for study advertisements, with the majority concurring that a medical professional approaching them would increase their likelihood of participation.


Asunto(s)
Ayuno Intermitente , Neoplasias , Humanos , Atención Ambulatoria , Citas y Horarios , Grupos Focales
9.
bioRxiv ; 2023 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-36945428

RESUMEN

Epithelial Ovarian Cancer (EOC) is the most lethal gynecologic cancer with limited genetic alterations identified that can be therapeutically targeted. In tumor bearing mice, short-term fasting, fasting mimicking diet and calorie restriction enhance the activity of antineoplastic treatment by modulating systemic metabolism and boosting anti-tumor immunity. We tested the outcome of sixteen-hour intermittent fasting (IF) on mouse EOC progression with focus on fasting driven antitumor immune responses. IF resulted in consistent decrease of tumor promoting metabolic growth factors and cytokines, recapitulating changes that creates a tumor antagonizing environment. Immune profiling revealed that IF profoundly reshapes anti-cancer immunity by inducing increase in CD4+ and CD8+ cells, paralleled by enhanced antitumor Th1 and cytotoxic responses, by enhancing their metabolic fitness. Metabolic studies revealed that IF generated bioactive metabolite BHB which can be a potential substitute for simulating the antitumor benefits of IF. However, in a direct comparison, IF surpassed exogenous BHB therapy in improving survival and activating anti-tumor immune response. Thus, our data provides strong evidence for IF and its metabolic mediator BHB for ameliorating EOC progression and as a viable approach in maintaining and sustaining an effective anti-tumor T cell response.

10.
bioRxiv ; 2023 Dec 25.
Artículo en Inglés | MEDLINE | ID: mdl-38234838

RESUMEN

Pathogenic Th17 cells are crucial to CNS autoimmune diseases like multiple sclerosis (MS), though their control by endogenous mechanisms is unknown. RNAseq analysis of brain glial cells identified immuno-responsive gene 1 (Irg1), a mitochondrial-related enzyme-coding gene, as one of the highly upregulated gene under inflammatory conditions which were further validated in the spinal cord of animals with experimental autoimmune encephalomyelitis (EAE), an animal model of MS. Moreover, Irg1 mRNA and protein levels in myeloid, CD4, and B cells were higher in the EAE group, raising questions about its function in CNS autoimmunity. We observed that Irg1 knockout (KO) mice exhibited severe EAE disease and greater mononuclear cell infiltration, including triple-positive CD4 cells expressing IL17a, GM-CSF, and IFNγ. Lack of Irg1 in macrophages led to higher levels of Class II expression and polarized myelin primed CD4 cells into pathogenic Th17 cells through the NLRP3/IL1ß axis. Our findings show that Irg1 in macrophages plays an important role in the formation of pathogenic Th17 cells, emphasizing its potential as a therapy for autoimmune diseases, including MS.

11.
Proc Natl Acad Sci U S A ; 119(25): e2123265119, 2022 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-35700359

RESUMEN

Metabolic aberrations impact the pathogenesis of multiple sclerosis (MS) and possibly can provide clues for new treatment strategies. Using untargeted metabolomics, we measured serum metabolites from 35 patients with relapsing-remitting multiple sclerosis (RRMS) and 14 healthy age-matched controls. Of 632 known metabolites detected, 60 were significantly altered in RRMS. Bioinformatics analysis identified an altered metabotype in patients with RRMS, represented by four changed metabolic pathways of glycerophospholipid, citrate cycle, sphingolipid, and pyruvate metabolism. Interestingly, the common upstream metabolic pathway feeding these four pathways is the glycolysis pathway. Real-time bioenergetic analysis of the patient-derived peripheral blood mononuclear cells showed enhanced glycolysis, supporting the altered metabolic state of immune cells. Experimental autoimmune encephalomyelitis mice treated with the glycolytic inhibitor 2-deoxy-D-glucose ameliorated the disease progression and inhibited the disease pathology significantly by promoting the antiinflammatory phenotype of monocytes/macrophage in the central nervous system. Our study provided a proof of principle for how a blood-based metabolomic approach using patient samples could lead to the identification of a therapeutic target for developing potential therapy.


Asunto(s)
Desarrollo de Medicamentos , Glucólisis , Metabolómica , Esclerosis Múltiple Recurrente-Remitente , Animales , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Antimetabolitos/farmacología , Antimetabolitos/uso terapéutico , Desoxiglucosa/farmacología , Desoxiglucosa/uso terapéutico , Desarrollo de Medicamentos/métodos , Encefalomielitis Autoinmune Experimental/tratamiento farmacológico , Encefalomielitis Autoinmune Experimental/metabolismo , Glucólisis/efectos de los fármacos , Humanos , Leucocitos Mononucleares/metabolismo , Ratones , Esclerosis Múltiple Recurrente-Remitente/sangre , Esclerosis Múltiple Recurrente-Remitente/tratamiento farmacológico , Esclerosis Múltiple Recurrente-Remitente/metabolismo
12.
Cancers (Basel) ; 14(6)2022 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-35326656

RESUMEN

Metformin is being actively repurposed for the treatment of gynecologic malignancies including ovarian cancer. We investigated if metformin induces analogous metabolic changes across ovarian cancer cells. Functional metabolic analysis showed metformin caused an immediate and sustained decrease in oxygen consumption while increasing glycolysis across A2780, C200, and SKOV3ip cell lines. Untargeted metabolomics showed metformin to have differential effects on glycolysis and TCA cycle metabolites, while consistent increased fatty acid oxidation intermediates were observed across the three cell lines. Metabolite set enrichment analysis showed alpha-linolenic/linoleic acid metabolism as being most upregulated. Downstream mediators of the alpha-linolenic/linoleic acid metabolism, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), were abundant in all three cell lines. EPA was more effective in inhibiting SKOV3 and CaOV3 xenografts, which correlated with inhibition of inflammatory markers and indicated a role for EPA-derived specialized pro-resolving mediators such as Resolvin E1. Thus, modulation of the metabolism of omega-3 fatty acids and their anti-inflammatory signaling molecules appears to be one of the common mechanisms of metformin's antitumor activity. The distinct metabolic signature of the tumors may indicate metformin response and aid the preclinical and clinical interpretation of metformin therapy in ovarian and other cancers.

13.
Semin Cancer Biol ; 86(Pt 2): 1179-1189, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-34302959

RESUMEN

Gynecologic cancers, starting in the reproductive organs of females, include cancer of cervix, endometrium, ovary commonly and vagina and vulva rarely. The changes in the composition of microbiome in gut and vagina affect immune and metabolic signaling of the host cells resulting in chronic inflammation, angiogenesis, cellular proliferation, genome instability, epithelial barrier breach and metabolic dysregulation that may lead to the onset or aggravated progression of gynecologic cancers. While microbiome in gynecologic cancers is just at horizon, certain significant microbiome signature associations have been found. Cervical cancer is accompanied with high loads of human papillomavirus, Fusobacteria and Sneathia species; endometrial cancer is reported to have presence of Atopobium vaginae and Porphyromonas species and significantly elevated levels of Proteobacteria and Firmicutes phylum bacteria, with Chlamydia trachomatis, Lactobacillus and Mycobacterium reported in ovarian cancer. Balancing microbiome composition in gynecologic cancers has the potential to be used as a therapeutic target. For example, the Lactobacillus species may play an important role in blocking adhesions of incursive pathogens to vaginal epithelium by lowering the pH, producing bacteriocins and employing competitive exclusions. The optimum or personalized balance of the microbiota can be maintained using pre- and probiotics, and fecal microbiota transplantations loaded with specific bacteria. Current evidence strongly suggest that a healthy microbiome can train and trigger the body's immune response to attack various gynecologic cancers. Furthermore, microbiome modulations can potentially contribute to improvements in immuno-oncology therapies.


Asunto(s)
Neoplasias de los Genitales Femeninos , Microbiota , Probióticos , Humanos , Femenino , Vagina/microbiología , Lactobacillus , Microbiota/genética , Neoplasias de los Genitales Femeninos/etiología , Neoplasias de los Genitales Femeninos/terapia , Probióticos/uso terapéutico
14.
Cell Rep Med ; 2(10): 100424, 2021 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-34755135

RESUMEN

The circulating metabolome provides unique insights into multiple sclerosis (MS) pathophysiology, but existing studies are relatively small or characterized limited metabolites. We test for differences in the metabolome between people with MS (PwMS; n = 637 samples) and healthy controls (HC; n = 317 samples) and assess the association between metabolomic profiles and disability in PwMS. We then assess whether metabolic differences correlate with changes in cellular gene expression using publicly available scRNA-seq data and whether identified metabolites affect human immune cell function. In PwMS, we identify striking abnormalities in aromatic amino acid (AAA) metabolites (p = 2.77E-18) that are also strongly associated with disability (p = 1.01E-4). Analysis of scRNA-seq data demonstrates altered AAA metabolism in CSF and blood-derived monocyte cell populations in PwMS. Treatment with AAA-derived metabolites in vitro alters monocytic endocytosis and pro-inflammatory cytokine production. We identify shifts in AAA metabolism resulting in the reduced production of immunomodulatory metabolites and increased production of metabotoxins in PwMS.


Asunto(s)
Aminoácidos Aromáticos/metabolismo , Metaboloma , Metabolómica/métodos , Monocitos/metabolismo , Esclerosis Múltiple/metabolismo , Adolescente , Adulto , Anciano , Aminoácidos Aromáticos/farmacología , Estudios de Casos y Controles , Citocinas/biosíntesis , Citocinas/clasificación , Bases de Datos Genéticas , Endocitosis/efectos de los fármacos , Femenino , Humanos , Masculino , Persona de Mediana Edad , Monocitos/efectos de los fármacos , Monocitos/patología , Esclerosis Múltiple/patología
15.
Mol Metab ; 53: 101272, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34144215

RESUMEN

OBJECTIVE: Immature CD11b + Gr1+ myeloid cells that acquire immunosuppressive capability, also known as myeloid-derived suppressor cells (MDSCs), are a heterogeneous population of cells that regulate immune responses. Our study's objective was to elucidate the role of ovarian cancer microenvironment in regulating the immunosuppressive function of CD11b+Gr1+ myeloid cells. METHODS: All studies were performed using the intraperitoneal ID8 syngeneic epithelial ovarian cancer mouse model. Myeloid cell depletion and immunotherapy were carried out using anti-Gr1 mAb, gemcitabine treatments, and/or anti-PD1 mAb. The treatment effect was assessed by a survival curve, in situ luciferase-guided imaging, and histopathologic evaluation. Adoptive transfer assays were carried out between congenic CD45.2 and CD45.1 mice. Immune surface and intracellular markers were assessed by flow cytometry. ELISA, western blot, and RT-PCR techniques were employed to assess the protein and RNA expression of various markers. Bone marrow-derived myeloid cells were used for ex-vivo studies. RESULTS: The depletion of Gr1+ immunosuppressive myeloid cells alone and in combination with anti-PD1 immunotherapy inhibited ovarian cancer growth. In addition to the adoptive transfer studies, these findings validate the role of immunosuppressive CD11b+Gr1+ myeloid cells in promoting ovarian cancer. Mechanistic investigations showed that ID8 tumor cells and their microenvironments produced recruitment and regulatory factors for immunosuppressive CD11b+Gr1+ myeloid cells. CD11b+Gr1+ myeloid cells primed by ID8 tumors showed increased immunosuppressive marker expression and acquired an energetic metabolic phenotype promoted primarily by increased oxidative phosphorylation fueled by glutamine. Inhibiting the glutamine metabolic pathway reduced the increased oxidative phosphorylation and decreased immunosuppressive markers' expression and function. Dihydrolipoamide succinyl transferase (DLST), a subunit of α-KGDC in the TCA cycle, was found to be the most significantly elevated gene in tumor-primed myeloid cells. The inhibition of DLST reduced oxidative phosphorylation, immunosuppressive marker expression and function in myeloid cells. CONCLUSION: Our study shows that the ovarian cancer microenvironment can regulate the metabolism and function of immunosuppressive CD11b + Gr1+ myeloid cells and modulate its immune microenvironment. Targeting glutamine metabolism via DLST in immunosuppressive myeloid cells decreased their activity, leading to a reduction in the immunosuppressive tumor microenvironment. Thus, targeting glutamine metabolism has the potential to enhance the success of immunotherapy in ovarian cancer.


Asunto(s)
Antígenos Ly/metabolismo , Antígeno CD11b/metabolismo , Carcinoma Epitelial de Ovario/metabolismo , Glutamina/metabolismo , Células Mieloides/metabolismo , Neoplasias Ováricas/metabolismo , Animales , Carcinoma Epitelial de Ovario/patología , Línea Celular Tumoral , Femenino , Metabolómica , Ratones , Ratones Congénicos , Ratones Endogámicos C57BL , Imagen Óptica , Neoplasias Ováricas/patología
16.
Adv Exp Med Biol ; 1352: 211-222, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35132603

RESUMEN

INTRODUCTION: Excessive inflammatory responses and failed resolution are major common causes of tissue injury and organ dysfunction in a variety of diseases, including multiple sclerosis (MS), diabetes, and most recently, COVID-19, despite the distinct pathoetiology of the diseases. The promotion of the natural process of inflammatory resolution has been long recognized to improve functional recovery and disease outcomes effectively. To mitigate the excessive inflammation in MS, scientific investigations identified a group of derivatives of omega fatty acids, known as specialized pro-resolving lipid mediators (SPM) that have been significantly effective in treating preclinical disease models of MS. METHODS: This chapter is based on our observations from MS. It is being increasingly deliberated that the ongoing COVID-19 infection induces severe cytokine storm that ultimately triggers rampant inflammation. The impact of infection and associated mortality is much higher in patients with co-morbid diseases. Also, reports suggest a better outcome in diabetic patients with reasonable glycemic control, which certainly hints towards a hidden role of anti-hyperglycemic drugs such as metformin in alleviating disease pathology through its anti-inflammatory feature. Notably, SPM and metformin share common therapeutic features in exerting a broad-spectrum anti-inflammatory activity in human patients with a superior safety profile. RESULTS: When there is an immediate need to encounter the fast-rampant infection of COVID-19 and control the viral-infection associated morbid inflammatory cytokine storm causing severe organ damage, SPM and metformin should be seriously considered as a potential adjunctive treatment. CONCLUSION: Given the fact that current treatment for COVID-19 is only supportive, global research is aimed at developing safe and effective therapeutic options that can result in a better clinical course in patients with comorbid conditions. Accordingly, taking a cue from our experiences in controlling robust inflammatory response in MS and diabetes by simultaneously inhibiting inflammatory process and stimulating its resolution, combinatorial therapy of metformin and SPM in COVID-19 holds significant promise in treating this global health crisis.


Asunto(s)
COVID-19 , Síndrome de Liberación de Citoquinas , Esclerosis Múltiple , COVID-19/complicaciones , Síndrome de Liberación de Citoquinas/virología , Humanos , SARS-CoV-2
17.
Invest Ophthalmol Vis Sci ; 61(14): 5, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-33263715

RESUMEN

Purpose: Age, sex, and genetics are important biological variables in determining an individual's susceptibility or response to infectious agents; however, their role has not been evaluated in intraocular infections. In this study, we comprehensively examined the impact of these host biological factors in the pathogenesis of experimental bacterial endophthalmitis. Methods: Endophthalmitis was induced by intravitreal injection of bacteria (Staphylococcus aureus) in the eyes of male and female C57BL/6 mice of different ages: group I (young, 6-8 weeks), group II (mid-age, 18-20 weeks), and group III (old, 1 year). Highly heterogeneous outbred J:DO mice were used for genetic diversity analysis. Eyes were subjected to clinical examination, retinal function testing using electroretinography (ERG), histopathological analysis (hematoxylin and eosin staining), and bacterial burden estimation. The levels of inflammatory mediators were measured using qPCR and ELISA, and the infiltration of neutrophils was determined by flow cytometry. Results: Both inbred C57BL/6 and diversity outbred (J:DO) mice were equally susceptible to S. aureus endophthalmitis, as evidenced by a time-dependent increase in clinical scores, bacterial burden, intraocular inflammation, and retinal tissue damage, in addition to decreased retinal function. However, no significant differences were observed in disease severity and innate responses in male versus female mice. Older mice (group III) exhibited higher clinical scores coinciding with increased bacterial proliferation and intraocular inflammation, resulting in enhanced disease severity. Moreover, bone-marrow-derived macrophages from old mice exhibited reduced phagocytic activity but increased inflammatory response toward S. aureus challenge. Conclusions: Age, but not sex, is an important biological variable in bacterial endophthalmitis. Identification of pathways underlying altered innate immunity and impaired bacterial clearance in aging eyes could provide new insights into the pathobiology of intraocular infections in elderly patients.


Asunto(s)
Endoftalmitis/patología , Factores de Edad , Animales , Electrorretinografía , Endoftalmitis/genética , Ensayo de Inmunoadsorción Enzimática , Femenino , Citometría de Flujo , Variación Genética/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Reacción en Cadena en Tiempo Real de la Polimerasa , Factores Sexuales , Infecciones Estafilocócicas/genética , Infecciones Estafilocócicas/patología
18.
JCI Insight ; 5(18)2020 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-32780724

RESUMEN

Tumor-associated macrophages (TAMs) affect cancer progression and therapy. Ovarian carcinoma often metastasizes to the peritoneal cavity. Here, we found 2 peritoneal macrophage subsets in mice bearing ID8 ovarian cancer based on T cell immunoglobulin and mucin domain containing 4 (Tim-4) expression. Tim-4+ TAMs were embryonically originated and locally sustained while Tim-4- TAMs were replenished from circulating monocytes. Tim-4+ TAMs, but not Tim-4- TAMs, promoted tumor growth in vivo. Relative to Tim-4- TAMs, Tim-4+ TAMs manifested high oxidative phosphorylation and adapted mitophagy to alleviate oxidative stress. High levels of arginase-1 in Tim-4+ TAMs contributed to potent mitophagy activities via weakened mTORC1 activation due to low arginine resultant from arginase-1-mediated metabolism. Furthermore, genetic deficiency of autophagy element FAK family-interacting protein of 200 kDa resulted in Tim-4+ TAM loss via ROS-mediated apoptosis and elevated T cell immunity and ID8 tumor inhibition in vivo. Moreover, human ovarian cancer-associated macrophages positive for complement receptor of the immunoglobulin superfamily (CRIg) were transcriptionally, metabolically, and functionally similar to murine Tim-4+ TAMs. Thus, targeting CRIg+ (Tim-4+) TAMs may potentially treat patients with ovarian cancer with peritoneal metastasis.


Asunto(s)
Autofagia , Macrófagos Peritoneales/patología , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/fisiología , Neoplasias Ováricas/patología , Estrés Oxidativo , Neoplasias Peritoneales/secundario , Adaptación Fisiológica , Animales , Proteínas Relacionadas con la Autofagia/fisiología , Femenino , Humanos , Antígenos Comunes de Leucocito/fisiología , Macrófagos Peritoneales/metabolismo , Proteínas de la Membrana/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neoplasias Ováricas/metabolismo , Neoplasias Peritoneales/metabolismo , Receptores CCR2/fisiología
19.
Sci Immunol ; 2(17)2017 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-29150439

RESUMEN

Naïve T cells are poorly studied in cancer patients. We report that naïve T cells are prone to undergo apoptosis due to a selective loss of FAK family-interacting protein of 200 kDa (FIP200) in ovarian cancer patients and tumor-bearing mice. This results in poor antitumor immunity via autophagy deficiency, mitochondria overactivation, and high reactive oxygen species production in T cells. Mechanistically, loss of FIP200 disables the balance between proapoptotic and antiapoptotic Bcl-2 family members via enhanced argonaute 2 (Ago2) degradation, reduced Ago2 and microRNA1198-5p complex formation, less microRNA1198-5p maturation, and consequently abolished microRNA1198-5p-mediated repression on apoptotic gene Bak1 Bcl-2 overexpression and mitochondria complex I inhibition rescue T cell apoptosis and promoted tumor immunity. Tumor-derived lactate translationally inhibits FIP200 expression by down-regulating the nicotinamide adenine dinucleotide level while potentially up-regulating the inhibitory effect of adenylate-uridylate-rich elements within the 3' untranslated region of Fip200 mRNA. Thus, tumors metabolically target naïve T cells to evade immunity.


Asunto(s)
Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Ácido Láctico/farmacología , Neoplasias Ováricas/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Linfocitos T/efectos de los fármacos , Animales , Apoptosis/genética , Autofagia/genética , Proteínas Relacionadas con la Autofagia , Línea Celular Tumoral , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Ácido Láctico/metabolismo , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Neoplasias Experimentales/genética , Neoplasias Experimentales/metabolismo , Neoplasias Experimentales/patología , Neoplasias Ováricas/genética , Neoplasias Ováricas/patología , Proteínas Tirosina Quinasas/genética , Linfocitos T/metabolismo
20.
Sci Rep ; 7(1): 8760, 2017 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-28821788

RESUMEN

Earlier investigations have revealed that tumor cells undergo metabolic reprogramming and mainly derive their cellular energy from aerobic glycolysis rather than oxidative phosphorylation even in the presence of oxygen. However, recent studies have shown that certain cancer cells display increased oxidative phosphorylation or high metabolically active phenotype. Cellular bioenergetic profiling of 13 established and 12 patient derived ovarian cancer cell lines revealed significant bioenergetics diversity. The bioenergetics phenotype of ovarian cancer cell lines correlated with functional phenotypes of doubling time and oxidative stress. Interestingly, chemosensitive cancer cell lines (A2780 and PEO1) displayed a glycolytic phenotype while their chemoresistant counterparts (C200 and PEO4) exhibited a high metabolically active phenotype with the ability to switch between oxidative phosphorylation or glycolysis. The chemosensitive cancer cells could not survive glucose deprivation, while the chemoresistant cells displayed adaptability. In the patient derived ovarian cancer cells, a similar correlation was observed between a high metabolically active phenotype and chemoresistance. Thus, ovarian cancer cells seem to display heterogeneity in using glycolysis or oxidative phosphorylation as an energy source. The flexibility in using different energy pathways may indicate a survival adaptation to achieve a higher 'cellular fitness' that may be also associated with chemoresistance.


Asunto(s)
Adaptación Biológica , Antineoplásicos/farmacología , Resistencia a Antineoplásicos , Metabolismo Energético , Neoplasias Ováricas/genética , Neoplasias Ováricas/metabolismo , Línea Celular Tumoral , Cisplatino , Resistencia a Antineoplásicos/genética , Metabolismo Energético/efectos de los fármacos , Metabolismo Energético/genética , Femenino , Regulación de la Expresión Génica , Glucosa/metabolismo , Glucólisis/genética , Humanos , Mitocondrias/genética , Mitocondrias/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA